AGN and Black Hole Physics with Constellation-X

Chris Reynolds

Department of Astronomy & Cntr. for Theory & Computation
University of Maryland

AGN Science Objectives

- λ Core "Beyond Einstein" objectives...
- λ Strong Gravity
 - Is GR correct in the strong-field domain?
- λ Relativistic matter and fields
 - Physics of accreting plasma close to black holes
 - Testing the electromagnetic part of GR
 - Formation and physics of relativistic jets
- λ Other AGN-stuff
 - Structure of the central engine as function of AGN type
 - AGN populations out to high redshift

Core science is best addressed through <u>detailed</u> studies of relativistically broadened emission lines from inner accretion disk (<u>iron</u> K\alpha line, in particular)

Basics...

- λ Supermassive black holes grow by radiatively-efficient accretion
 - Soltan argument; compare
 QSO background light with
 BH mass density
 - Luminous AGN must be efficient sources
- There is optically-thick, cold matter reaching very close to BH horizon in such sources
 - Continuity & Energy eqn.
- λ X-rays coming from very compact region (~horizon scales)
 - Variability

...Ingredients for X-ray reflection from inner accretion disk are all present!

Relativistic (iron) emission lines

Iron line profile in MCG-6-30-15 (Tanaka et al. 1995)

Strong gravity & accretion physics

- λ Broad emission lines are the best understood probe of relativistic gravity
- λ Study of these features is alive and well in the XMM era

MCG-6-30-15 Fabian et al. (2002)

NGC3516 Turner et al. (2002)

Mrk205 Reeves et al.

LINER (K.Weaver, in prep.)

J. Miller et al. (2004)

Galactic Black Hole Binaries...GX339-4

Iron lines in the XMM era...

- Now robust is evidence that we're seeing strong relativistic effects?
 - Complex absorption (photoionized absorption etc.)?
 - Continuum curvature (including reflection continuum)?
 - Other broadening mechanisms?
- All these effects are calculable, producing detailed model predictions that can be compared with XMM spectra. But one needs to be careful!
 - Must stick to physical models (no random edges at arbitrary Es)
 - Must use variability info where possible
 - Distinguish "absence of evidence" from "evidence of absence"

λ Bottom line from XMM

- There are a small number of very robust relativistic iron emission lines (MCG-6-30-15; GX339-4)
- At a lower level of robustness, ~25% of bright AGN have detected relativistically broad iron lines
- Many more may have undetected (weaker) broad lines
- The systematic, careful survey still has to be done.
- **Even a few solid examples of relativistic iron lines in bright AGN allows Constellation-X to address its core scientific goals!**

A taster of the science currently being debated...

- Ne see very broad lines in MCG-6-30-15 and GX339-4
- Assuming validity of GR, the need for rapidly-rotating black holes is unambiguous
- Very centrally concentrated pattern of X-ray illumination needed to produce such lines
 - Strong light bending effects? (Fabian, Minutti, Vaughan et al.)
 - Magnetic torquing of inner accretion disk by spinning black hole?
 (Reynolds, Wilms et al.)
- λ Either way, we're debating processes occuring within the inner 2-3GM/c²

MCG-6-30-15
Fit with a Novikov & Thorne disk

Fit with a Agol & Krolik torqued disk (need "infinite efficiency case)

G.Minutti & A.C.Fabian

What can Con-X do?

- λ Core science from detailed iron line variability
 - Structural changes in disk/corona (viscous timescale; XMM+)
 - Accretion disk dynamics (dynamical timescale; XMM++)
 - Reverberation effects (lightcrossing timescale; TRIP baseline+)
- λ Spectral properties of faint and distant AGN
 - Accretion history of BHs through cosmic time (how do BHs grow?); see Ann's talk.
 - Plasma physics of very low-luminosity AGN

Armitage & CSR (2003)

Iron line variability

- λ Con-X will allow detailed study of line variability
- λ See effects of nonaxisymmetric structure orbiting in disk
 - Follow dynamics of individual "blobs" in disk
 - Quantitative test of orbital dynamics in strong gravity regime

Armitage & CSR (2003)

Non-axisymmetric structure may have been seen already...

Chandra-HETG data on NGC3516 (Turner et al. 2002)

Simulation results for inclination of 20 degs (summed over 2 full orbits)

Astro-E will further study of these features... but need Con-X to realize full potential.

Relativistic iron line reverberation...

λ Reverberation

- X-ray source displays dramatic flares
- Iron line profile will change as echo sweeps across disk
- Needs high throughput
 spectroscopy but probably
 within reach of 3m² Con-X
- Current line variability results have <u>nothing</u> to say about feasibility of reverberation!

CSR et al. (1999) Young & CSR (2000)

22

Constellation-X simulations

Conclusions

- Black-hole core science crucial to Con-X science case (at least while we're part of the Beyond Einstein Program)
- Much of core science is accessed through variability of relativistically broad (iron) emission lines
 - There are at least a few robust targets
 - We have well developed ideas of how to get at the big science questions
- **Need AREA and SPECTRAL RESOLUTION at iron K-band energies.**

Iron line tracks continuum flux in Deep Minimum State...

Overall behaviour is <u>quantitatively</u> explained by strong light bending together with changes in the size/height of part of the X-ray source... the "Two Component Model" (Fabian, Vaughan and collaborators)

Iron lines in the XMM era...

- λ How robust is evidence that we're seeing strong relativistic effects?
 - Complex absorption (photoionized absorption etc.)?
 - Continuum curvature (including reflection continuum)?
 - Other broadening mechanisms?
- All these effects are calculable, producing detailed model predictions that can be compared with XMM spectra. But one needs to be careful!
 - Must stick to physical models (no random edges at arbitrary Es)
 - Must use variability info where possible
 - Distinguish "absence of evidence" from "evidence of absence"

The poster child... MCG-6-30-15

"Warm absorber" and "soft excess" included

MCG-6-30-15

Partial covering requires steep continuum... disagrees with higher-energy data (e.g. RXTE)

Complex continuum shape?

